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Finding differentially expressed gene combinations<p>CorScor is a novel approach to identifying gene pairs with joint differential expression. It can be used to detect phenotype-related dependencies and interactions among genes.</p>

Abstract

We propose 'CorScor', a novel approach for identifying gene pairs with joint differential
expression. This is defined as a situation with good phenotype discrimination in the bivariate, but
not in the two marginal distributions. CorScor can be used to detect phenotype-related
dependencies and interactions among genes. Our easily interpretable approach is scalable to
current microarray dimensions and yields promising results on several cancer-gene-expression
datasets.

Background
Gene-expression monitoring by microarray technologies has
become an important approach in biological and medical
research over the past decade. A common experimental
design is the comparison of two sets of samples from different
phenotypes (diseases and normal tissue), with the goal of
searching for genes showing differential expression. This is
usually done via statistical testing procedures and, often, sub-
sequent multiple testing corrections. Prominent examples
include t-testing, significance analysis of microarrays [1], and
empirical Bayes analysis [2]. A comprehensive review of such
approaches can be found in Pan [3]. All these methods use a
one-gene-at-a-time strategy, considering only the association
between single genes and the phenotype.

Many approaches for classification of phenotypes using
microarrays do consider multiple genes simultaneously, but
they address a different question, as their goal is to produce
sets of differentially expressed genes for use in class predic-
tion [4-8]. While interesting, these approaches have the limi-
tation that they cannot be applied comprehensively to all
possible pairs, that is, there currently are no practical tools for

exploring phenotype-related dependencies and interactions
among all gene pairs in large datasets. In this paper we
present a methodology for addressing this issue, and we show
that it can find interesting biological relationships that would
be missed by existing approaches.

We are interested in searching for two types of gene pairs,
illustrated in Figure 1 by artificial examples. In the left panel,
the two genes show a pronounced joint association on the
phenotype: if the sum of their expression levels exceeds 3
units, we observe solely the blue-triangle phenotype. A bio-
logical mechanism leading to this phenomenon may occur
when the two genes are substitutes in a molecular process
that is closely linked to the phenotype. Therefore, we denote
this situation as the 'substitution case'. Neither of the two
genes shows a strong association with the phenotype in the
univariate marginal distribution, and thus both would have
been highly unlikely to appear in a gene list produced by a
one-gene-at-a-time testing approach. A complementary case
occurs when two genes cluster around two positively sloped
axes: then the phenotype is associated with a difference in
expression, a situation we refer to as the 'gap case'.
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A more complex case is shown in our second artificial exam-
ple, in the right panel of Figure 1. There is no obvious demar-
cation in space and, again, neither of the two genes carries
information on its own. However, together they do. Biologi-
cally speaking, this example could reflect an 'on/off situation'.
If both genes are off (expression values below 1.5 units), or
both genes are on (expression value above 1.5 units), we
observe the red-circle phenotype. In contrast, if only one of
the genes is turned on, the blue-triangle phenotype is
predominant.

Statistically, we define joint differential expression as good
phenotype discrimination by the joint distribution, but not by
the univariate marginal distributions of two genes. From a
functional genomics perspective, such pairs could represent
interesting novel biological interactions, as for example genes
that are in the same pathway.

The identification of gene pairs with joint differential expres-
sion is ambitious for several reasons. First, gene pair identifi-
cation is subject to the curse of dimensionality. While the
usual number p of genes is in the tens of thousands, the
number of gene pairs is p(p-1)/2, usually in the millions. Sec-
ond, there are no existing and quickly computable test statis-
tics that exactly address our notion of joint differential
expression. Existing bivariate tests such as Hotelling's T2 [9]
only screen for differences in the bivariate mean vectors and
will thus favor pairs that consist of genes with strong mar-
ginal effects. Third, identifying joint differential expression
based on comparing predictive models for pairs and single
genes is conceptually sound but is unattractive because of its
prohibitive computational burden.

Here we propose a novel, efficient, and scalable approach for
searching gene pairs with joint differential expression. It
relies on calculating an appropriately defined test statistic

from the unconditional as well as the class-conditional corre-
lation matrices. Therefore, we call our method CorScor, as a
shorthand for correlation scoring. Its biggest advantages are
its straightforward interpretation and the fact that it can be
calculated very quickly, which allows for an exhaustive search
among the millions of pairs even in large gene-expression
datasets. On the basis of several gene-expression datasets
from the literature, we illustrate our method and collect
empirical evidence that it yields gene pairs that have a ten-
dency to share biological relationships.

Results
Data preparation
We illustrate the power and utility of our method with a com-
prehensive analysis of two datasets, and display the results
for two further problems in the additional data files section.
The first dataset discussed in detail is from a publicly availa-
ble study on colon cancer by Alon et al. [10,11]. It originated
from Affymetrix Hum6000 arrays and contains the expres-
sion values of the 2,000 genes with highest minimal intensity
across 62 colon tissues, 40 of which were tumorous and 22 of
which were normal. We transformed the data by a base 10 log-
transformation and standardized each array to zero mean and
unit variance across genes. The second is a publicly available
breast cancer dataset from Hedenfalk et al. [12,13]. The data
were obtained from Stanford-type cDNA microarrays, moni-
toring 2,654 genes across 22 breast cancer samples, 7 of
which were found to carry germline BRCA1 mutations. Nor-
malization was carried out following the approach of Yang et
al. [14]. Our selection of data illustrates that CorScor works
independently of the platform. We require accurately pre-
processed expression data from n samples and p genes, stored
in an (n × p) matrix denoted by (xig). In what follows, we will
encode the phenotype information generically as 0 and 1, and
store it in the n-dimensional response variable y.

The gap/substitution cases
Our method for revealing genes with joint differential expres-
sion relies on computing a simple score function. Given a pair
consisting of genes g and g', we determine a measure of pair-
wise dependence ρ(g,g') among their expression vectors.
Next, by restricting in turn to just the samples from each phe-
notype, we obtain both class-conditional measures of
dependence ρ0(g,g') and ρ1(g,g').

For finding gene pairs that jointly discriminate the two phe-
notypes according to a gap or substitution mechanism as
shown by the artificial example in the left panel of Figure 1, we
recommend computing the scoring function

S(ρ,ρ0,ρ1) = | ρ0 + ρ1 - αρ |  (1)

for all gene pairs (g,g'), using the Pearson correlation coeffi-
cient as dependence measure. Note that the operations in
function (1) can be done for all gene pairs simultaneously by

Two artificial examples of joint differential gene expressionFigure 1
Two artificial examples of joint differential gene expression. The units of 
the x-axis and y-axis are gene expression; blue triangles and red circles 
represent samples of two different phenotypes. The inner panels reflect 
the joint distribution; the outer margins display the univariate marginal 
distributions. The dashed lines represent the first principal components, 
conditional on the phenotype.
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element-wise operations on three (p × p) matrices. As
illustrated in Figure 2, gene pairs with high scores indeed
show good joint differential expression on the colon and
BRCA1 data, that is, accurate phenotype discrimination and
comparably uninformative marginals. Some of the gene pairs
we found are correlated in one group but not in the other.
While this behavior does not exactly match the prototype
example from Figure 1, it still fits our definition of joint differ-
ential expression. Moreover, this loss of coregulation can be a
biologically relevant feature.

The rationale for the success of scoring function (1) is as fol-
lows. High conditional correlations arise if the data points
within each group are tightly aligned along a straight line,
which can be represented by the first principal components,
shown in Figure 2 by the dashed lines. Good joint differential
expression requires such tight clustering and close-to-parallel
axis alignment. Hence, high conditional correlations with
concordant sign, and also a shift between the alignment axes,
are necessary. The bigger this shift, and thus the clearer the
joint separation, the lower the unconditional correlation ρ
gets. Hence, we diminish the sum of ρ0 and ρ1 by αρ. By taking
the absolute value, we achieve symmetric treatment of posi-

tively and negatively sloped alignment axes, that is, we can
capture the gap and the substitution cases together. The sca-
lar tuning parameter α governs the balance between separa-
tion and parallel alignment. We observed empirically good
results with α∈  [1,2], and use α = 1.5 throughout the paper.

The first three columns in Table 1 show the values of ρ, ρ0, ρ1,
and and the scoring function S for the three highest-scoring
gene pairs according to the scoring function (1). As expected,
the class-conditional correlations ρ0 and ρ1 tend to be high in
absolute value and concordant in their signs, whereas the
overall correlation is low, and sometimes even has a discord-
ant sign.

A concise visualization of the scores of gene pairs with joint
differential expression is a heat map, as shown in Figure 3.
We select the first 50 genes involved in the top-ranked gene
pairs and color-code the score for all 502/2 = 1,250 gene pairs
from black (low value) through shaded grey to white (high
value, excellent joint differential expression). Rows and col-
umns of this symmetric matrix are rearranged according to a
hierarchical clustering, such that genes that share common
joint differential expression properties lie adjacent. We

Six examples of joint differential gene expression of the gap/substitution type, obtained from the colon and BRCA1 datasetsFigure 2
Six examples of joint differential gene expression of the gap/substitution type, obtained from the colon and BRCA1 datasets. The inner panels show the 
joint distribution; the outer margins display the univariate distributions. Blue triangles stand for cancers in colon and BRCA1 mutants in breast; the red 
circles stand for normal samples in colon and sporadic cancers in breast. The dashed lines represent the conditional first principal components.
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hypothesize that clustered genes may tend to share biological
relationship. An exploratory analysis on the colon data
supports this: the most prominent feature is a group of genes
that can be found at positions 39 to 45 of the matrix. It con-
sists of the genes with HUGO symbols GSN, ACTN1,
SPARCL1, ITGA7, TPM1, and COL6A2.

Three of these six genes (GSN, ACTN1, and SPARCL1) share a
common annotation in the Kyoto Encyclopedia of Genes and
Genomes pathway database (KEGG [15]). They are all
involved in the 'regulation of actin cytoskeleton'. The remain-

ing three genes lack pathway annotation in KEGG, but an
analysis of their Gene Ontology terms (GO [16]) still reveals a
functional connection: TPM1 has the GO terms 'actin binding'
and 'cytoskeleton'. SPARCL1 is involved in 'calcium ion bind-
ing', a term it shares with GSN and ACTN1.

The heat map of the BRCA1 data, shown in the right panel of
Figure 3, does not show an equally pronounced block struc-
ture. The absence of KEGG annotation for a large proportion
of the genes makes it challenging to carry out the same type of
validation. However, consistent with the known DNA-bind-

Table 1

Correlation coefficients and CorScor values for the gap/substitution scenario

Colon BRCA1

Pair 1 Pair 2 Pair 3 Pair 1 Pair 2 Pair 3

ρ 0.19 -0.01 0.02 0.27 0.32 0.31

ρ0 0.84 0.65 0.67 -0.79 -0.20 -0.38

ρ1 0.53 0.33 0.34 -0.63 -0.96 -0.78

S(ρ,ρ0,ρ1) 1.09 0.99 0.98 1.82 1.64 1.62

Conditional and unconditional correlation coefficients, as well as the value of the scoring functions from Equation (1) with α = 1.5, for the top three 
gene pairs in both the colon and the BRCA1 data.

Symmetric heat map of CorScor values from Equation (1), for the colon and BRCA1 dataFigure 3
Symmetric heat map of CorScor values from Equation (1), for the colon and BRCA1 data. Columns and rows are rearranged according to a hierarchical 
clustering. Displayed are the 50 genes that are involved in the pairs with the highest scores. Black stands for low, grey for intermediate, and white for high 
score.
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ing function of the BRCA1 gene [17], many of the genes are
related to binding activities. For a full overview of the genes
involved in the heat maps, we refer readers to our supplemen-
tary web page [18].

Our findings on the colon data illustrate that CorScor has the
potential to bring up gene pairs with a functional relation-
ship, and that our heat maps are a helpful visualization tool

for grouping and detecting the most important ones among
them. The major benefit of CorScor, compared with estab-
lished clustering techniques based on the expression values of
single genes, is that we are able to capture genes without
strong marginal effects. The genes involved in our pairs do
not show pronounced fold changes across the phenotypes,
but nevertheless seem to be key in molecular processes
closely linked to the phenotype.

Table 2

Correlation coefficients and CorScor values for the on/off scenario

Colon BRCA1

Pair 1 Pair 2 Pair 3 Pair 1 Pair 2 Pair 3

ρ0 0.54 0.48 -0.72 0.86 0.93 0.89

ρ1 -0.67 -0.68 0.42 -1.00 -0.93 -0.95

S(ρ,ρ0,ρ1) 1.21 1.17 1.13 1.86 1.86 1.84

Conditional and unconditional correlation coefficients, as well as the value of the scoring functions from Equation (2) for the top three gene pairs in 
both the colon and the BRCA1 data.

Six examples of joint differential gene expression according to the on/off-scenario, obtained from the colon and BRCA1 dataFigure 4
Six examples of joint differential gene expression according to the on/off-scenario, obtained from the colon and BRCA1 data. The inner panels show the 
joint distribution; the outer margins display the univariate distributions. Blue triangles stand for cancerous and BRCA1 mutants, the red circles for normal 
and BRCA1 wild types, respectively. The dashed lines represent the direction of the conditional first principal components.
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The on/off-case
Another scenario in which joint differential expression is
important is illustrated with the artificial example in the right
panel of Figure 1. While the marginal distributions are not
informative, the joint distribution clearly is: one phenotype is
prevalent when the expression of both genes is either turned
on or turned off, whereas the other phenotype is predominant
when only one of the genes is expressed. An effective scoring
function to capture these gene pairs is

S(ρ,ρ0,ρ1) = | ρ1 - ρ0 |,  (2)

the difference of the class-conditional dependence measures
ρ0 and ρ1. We use Spearman's rank correlations in (2),
because this prevents outlier-driven situations from appear-
ing among the top gene pairs. Table 2 shows the values of ρ0,
ρ1 and S for the top-scoring gene pairs in the colon and BRCA1
data. We observe fairly high conditional correlations here,
which is partly caused by the use of Spearman's rank
correlation.

Figure 4 shows scatterplots of the highest-scoring gene pairs
on the colon and BRCA1 data. Joint differential expression is
clearly present and an interesting biological interpretation
can be derived from these scatterplots. As an example, we dis-
cuss the best-scoring gene pair from the BRCA1 data: for the
wild-type samples (represented by red circles), there is a high
positive correlation between TAF12, a gene that is related to
transcription initiation, and RB1, a transcription inhibitor.
For the BRCA1 mutant samples, the situation is reversed and
the two genes show a strong negative correlation. This obser-
vation suggests a specific nuclear pathway that may be dis-
torted as a result of BRCA1 mutations.

We emphasize again that because of the very different scope,
such findings could not be made with one-at-a-time gene
selection and/or hierarchical clustering based on gene-
expression values. Again, for this on/off-scenario, the full
information and annotation of the genes that are involved in
the most promising gene pairs are available from our supple-
mentary website [18].

Permutation analysis
Next, we address the question of whether and how many gene
pairs achieve promising score values by chance alone. We do
this by performing permutation-based empirical Bayes anal-
ysis [2]. We generate 100 noise gene-expression datasets by
scrambling the phenotype labels. We then run CorScor on
each of these 100 noise datasets, obtain a vector of score val-
ues with length p(p-1)/2 and rank their values. By taking the
average within rank over the 100 permutations, we obtain an
estimated null distribution of CorScor values.

The histograms in Figure 5 display the right tail of the permu-
tation distribution to the right of the 95% quantile. The
dashed vertical lines mark the score value of the top three

gene pairs (shown in Figures 2 and 4) on both the gap/substi-
tution and the on/off situation, and for both datasets. For the
top gene pairs, we also give the fraction of null scores that
exceed the observed values, which is an approximation to the
empirical false-discovery rate. The permutation distribution
has a somewhat heavier tail and slower decay for the on/off
situation. Furthermore, when comparing the colon and
BRCA1 permutation scores, we observe that the latter have
higher values. This is caused by the difference in sample size.
When we arbitrarily restricted the colon dataset to the same
size as the BRCA1 dataset, the score values were in the same
range (data not shown).

Table 3 shows the number of gene pairs that exceed a given
quantile of the permutation distribution, together with the
ratio of observed versus expected number of gene pairs
exceeding these quantiles. Again here, we observe that in the
gap/substitution scenario, more gene pairs reach very high
significance levels. In general, our results confirm that it is
unlikely that the gene pairs we report have their joint differ-
ential expression due to chance alone.

Comparison with predictive modeling
Next, we contrast the results of searching for jointly differen-
tially expressed gene pairs by CorScor to an alternative search
based on predictive modeling, implemented with logistic
regression. This is also a novel method, although some ideas
in this direction were presented in a conference talk by P.

Histograms displaying the right tail of the permutation distributions of CorScor in the colon and BRCA1 dataFigure 5
Histograms displaying the right tail of the permutation distributions of 
CorScor in the colon and BRCA1 data. The dashed vertical lines indicate 
the score values of the top three gene pairs from Figures 2 and 4. Also 
reported is the fraction of null scores (tail.p) that exceed each of observed 
values.
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Wirapati [19]. The predictive-modeling approach is far more
computer intensive and currently not applicable to arrays
with tens of thousands of features. We chose the following
procedure for our predictive-modeling search. In the gap/
substitution situation and for each gene pair (g,g'), we fitted
three logistic regression models: a model with both genes as
additive inputs to capture bivariate differential expression,
and two univariate models with each gene as input to capture
the marginal separation. This generates conditional probabil-
ity estimates pi(xg, xg'), pi(xg), and pi(xg') for each observation
i. We then compute three log-likelihoods on the basis of these
probabilities,

The log-likelihood is a very natural measure for the amount of
discrimination in binary problems. A gene pair with good
joint differential expression reflecting a gap or substitution
should show good discrimination for the bivariate model but
comparably poor discrimination for the single-gene models.
Hence, we can define a scoring function based on predictive
modeling as

The left two panels in Figure 6 show scatterplots of CorScor's
outcome versus predictive-modeling scores in the gap/substi-
tution situation. The correlation between the two measures is
0.39 for the colon data, and 0.30 for the BRCA1 data.

The on/off-scenario requires a different approach. For each
gene pair (g,g'), we chose to measure the improvement in pre-
dictive accuracy when comparing a full two-gene interaction
model versus a two-gene additive model. This requires gener-
ating conditional probability estimates pi(xg,xg',xgg') and

pi(xg, xg') using logistic regression for each observation i.
These are then plugged into the log-likelihood from (3). From
these, we can obtain a predictive-modeling-based scoring
function for the on/off scenario via

T(g,g') = l(y,p(xg,xg',xgg')) - l(y,p(xg,xg'))  (5)

Table 3

Gene pairs exceeding quantiles

Colon: G/S Colon: O/O BRCA1: G/S BRCA1: O/O

Quantile # o/e # o/e # o/e # o/e

0 1,446 - 0 - 7 - 4 -

10-6 2,204 1.1·103 1 5.0·10-1 45 1.3.101 8 2.3·100

10-5 5,917 3.0·102 11 5.5·10-1 444 1.3.101 69 2.0·100

10-4 11,260 5.6·101 167 8.4·10-1 2,473 7.0.100 584 1.7·100

10-3 22,701 1.1·101 1,924 9.6·10-1 12488 3.6.100 5,063 1.4·100

The number of gene pairs (#) that exceed a given quantile of the permutation distribution in the data for colon and BRCA1, along with the ratio of 
observed versus expected (o/e) number of gene pairs exceeding this threshold. The abbreviations G/S and O/O refer to the scoring function: G/S, 
gap/substitution scenario; O/O, on/off scoring situation.
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1 1 3log log
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Comparison of CorScor and predictive modeling scoresFigure 6
Comparison of CorScor and predictive modeling scores. Density plots for 
a comparison of the gap/substitution scoring function from correlation 
scoring defined in Equation (1) and predictive modeling (Equation (4)), as 
well as the on/off objective measures defined in Equations (2) and (5). Each 
panel is divided into a 50-×-50-cell grid. The darker the color of a cell, the 
more instances are therein. In the figure header, cor is the Pearson 
correlation coefficient between the CorScor and the respective predictive 
modeling scores.
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The concordance of this measure with CorScor's output is
illustrated in the right two panels of Figure 6. We observe a
correlation of 0.54 in the colon data and 0.29 in the BRCA1
data, but many of CorScor's top-scoring gene pairs are not
identified by predictive modeling.

For further investigation of these differences between CorS-
cor and logistic regression, we performed a simulation study
that makes it possible to judge differences in the power for
detecting joint differential expression. We adopt a scenario
similar to the colon data, with two phenotypes of 22 and 40
samples each. For the gap/substitution situation, the gene
expressions for the two phenotypes are simulated independ-
ently according to a bivariate normal distribution with condi-
tional correlations of 0.6. The amount of joint differential
expression is controlled via a shift in the means on both axes,

staggered at  standard deviations. We con-

sider the gene pairs without mean shift (and thus with over-
lapping data point clouds) as the null situation without joint

differential expression. The situation with  standard devi-

ations of mean shift approximately corresponds to the
amount of joint differential expression in the best gene pairs
from the colon data. We generated 100 such gene pairs, deter-
mined the score values for CorScor and logistic regression,
and display the ability of detecting joint differential expres-
sion with receiver operating characteristic (ROC) curves in
Figure 7. We observe that logistic regression does better for
the slight mean shifts, but for a moderate to large amount of
joint differential expression, the two methods perform
equally well.

For the on/off-scenario, the gene expressions for the two phe-
notypes are also simulated from independent normal distri-
butions, but without mean shift. The amount of joint
differential expression is controlled by the conditional corre-
lations, positive for one phenotype, negative for the other.
The correlation coefficients are staggered at values of

 with a correlation of zero corresponding

to the null situation without joint differential expression and

a value of  being representative of the best pairs we see

in true datasets. The right panel in Figure 7 displays the ROC
curves for these simulations. We observe only slight differ-
ences between logistic regression and CorScor. Both methods
show good power for detecting gene pairs with strong joint
differential expression as they are found in true microarray
datasets. In summary, we conclude that CorScor is as power-
ful at detecting relevant amounts of joint differential expres-
sion as logistic regression, but has a markedly lower
computational cost.

Software
All our computations were implemented in the statistical pro-
gramming language R [20]. Via its function cor, it provides a
very convenient and efficient routine for estimating Pearson
and Spearman gene-pair correlation coefficients from an
expression matrix. In the colon and BRCA1 data, an
exhaustive search across all gene pairs with CorScor takes
about 5 seconds on a 1.5 GHz Intel-Pentium-powered per-
sonal computer with 512 Mb of RAM.

All our code for identifying gene pairs with joint differential
expression, as well as for their visualization by scatterplots
and heat maps, is available as a documented package named
corscor, and will be submitted to the Bioconductor project
[21]. Links and updates can also be found on our supplemen-
tary website [18].

Discussion
In a recent paper, Xiao and colleagues [22] considered multi-
variate searches for differentially expressed gene combina-
tions. Their goal was to uncover subsets of predefined size k
that are such that the multivariate distributions of expression
in the two phenotypes differ. Similar ideas were used by the
same group in the context of data exploration and variable
selection [23,24]. The goal of their approach is to uncover sets
that potentially consist of combinations of joint and margin-
ally differentially expressed genes. This is a different goal
from that considered here. For example, in Figure 4, vertically
shifting all the blue points would increase multivariate differ-
ence but leave the on/off scores from Equation (2)
unchanged. Here, we emphasize the search for interactions
per se, because of the clearer functional genomics implica-
tions, though high multivariate distance can also be of inter-

Power analysis for detecting joint differential expressionFigure 7
Power analysis for detecting joint differential expression. Receiver 
operating characteristic (ROC) curves that display the fraction of false 
positives, or discriminatory ability, in our simulation study to detect joint 
differential expression. The left panel summarizes information about the 
gap/substitution scenario; the right panel is about the on/off scenario. The 
solid lines correspond to CorScor, and the dashed ones, to logistic 
regression. Finally, the strength of joint differential expression was set at 
five different levels in our simulation experiment. The yellow lines are for 
the weakest amount of joint differential expression and the black lines, for 
the strongest amount.
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est. The Xiao et al. approach is computationally demanding
because each set is evaluated by an additional cross-valida-
tion. Comprehensive exploration of all pairs is challenging
and stochastic search is necessary for subsets of three or
more.

In the section 'Comparison with predictive modeling', we pre-
sented an approach to screening for joint differential expres-
sion based on predictive modeling. While this shares the
scope of CorScor, it is not scalable to the current dimensions
of gene-expression data. A full search with predictive mode-
ling on the colon or the BRCA1 data with less than 3,000
genes each requires about two weeks of central processing
unit time, whereas CorScor needs only about 5 seconds. Since
the number of gene pairs and thus the computing time grows
quadratically with the number of genes, the analysis of a
roughly quintupled Affymetrix HGU133 array with more than
12,000 genes would increase the computing time by a factor
of roughly 25, making the predictive-modeling approach pro-
hibitive for practical application. We also observed that the
gene pairs found by CorScor and by the predictive-modeling
approach differ. To develop a better sense of the nature of the
differences, we visually compared a large number of gene
pairs from the two methods (not shown). The scatterplots of
the top gene pairs according to the gap/substitution predic-
tive-modeling scoring function in Equation (4) reveal that the
predictive approach is very sensitive to outliers, whereas Cor-
Scor is more robust in this regard. Additionally, the joint
separation is often more pronounced with CorScor. In the on/
off search, visual scatterplot inspection and examination of
gene annotations favor CorScor further. The predictive-mod-
eling objective function in Equation (5) does not seem to
exactly match the scope of its correlation-based counterpart
and generally did not yield any gene pairs that could serve as
indicators for aberrant molecular processes.

In the on/off search, in particular, a critical difference is in the
fact that pairs can show strong evidence of a reversal in the
sign of the conditional correlations, while still having a sub-
stantial overlap of the two conditional distributions (see for
example the top left and top right pairs in Figure 4). This can
lead to a high CorScor value, but leads to only a moderate pre-
dictive score, and a small multivariate distance. These cases,
however, can be highly relevant biologically, and it is
important to be able to identify them. In conclusion, of the
two approaches that we are proposing and investigating here,
CorScor is the simpler and more efficient computationally,
and it also appears to identify gene pairs that are more prom-
ising candidates for a detailed biological analysis.

Another tool for finding interactions among gene pairs is rel-
evance networks [25]. They examine interactions among
genes by thresholding covariance matrices and graphically
displaying the connections among the genes whose correla-
tions exceed the threshold. We investigated a different type of
gene interactions here, namely interactions that are altered as

a result of the phenotype comparison of interest. However,
the type of visualization implemented in relevance networks
could also be used to represent the findings of our algorithm.
Moreover, our approach was illustrated here using Pearson's
and Spearman's correlations, but the general idea can be
extended straightforwardly to any easily computed measure
of pairwise association among gene expression levels. Finally,
Zhou et al. [26] introduced second-order expression correla-
tions that investigate regulatory networks by exploring varia-
tion of correlations across conditions. Whereas their method
focuses on concordant correlations, our approach is based on
correlation differences.

Conclusion
In summary, this paper presents a novel approach for finding
gene pairs with joint differential expression. This represents
a complement to the widely used one-gene-at-a-time testing
approaches and the associated list-enrichment tests. The idea
behind joint differential expression is to find genes that only
in pairs, and not individually, discriminate two given pheno-
types. These pairs make it possible to explore dependence and
interaction among genes, as well as to screen for molecular
processes that are linked to disease. Since the usual number
of gene pairs is in the millions, there is a need for a quickly
computable criterion. We propose two scoring functions,
based on conditional and unconditional correlation coeffi-
cients. We show that these measures have the ability to
uncover gene pairs that show promising scatterplot patterns
and tend to share a biological relationship. In cancer
research, a strength of CorScor lies in its potential ability to
find genes that have not traditionally been involved with can-
cer, as they may represent new avenues for cancer cell biology
and, more importantly, therapeutic intervention.

Additional data files
The following additional data are available with the online
version of this paper. To provide further evidence for the gen-
eral applicability of the CorScor approach, we provide empir-
ical results for four additional microarray problems as
additional data files. Additional data file 1 is from a publicly
available leukemia study by Armstrong et al. [27,28]. The
data originated from Affymetrix HG U95A arrays and, after
our normalization, feature the expression of 6,177 genes
across a total of 72 samples. For the CorScor analysis, we
restricted to the binary distinction of 24 samples from acute
lymphoblastic leukemias (ALL) versus 28 samples from acute
myeloid leukemias (AML).

Additional data file 2 is based on a dataset from a publicly
available lung cancer study of Bhattacharjee et al. [29,30]. It
also originated from Affymetrix HG U95A arrays and con-
tains 3,171 genes after our normalization. The CorScor analy-
sis was run on 20 carcinoid samples and 17 normal lung
tissues. Additional data file 3 is a dataset from the seminal
Genome Biology 2005, 6:R88
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leukemia study of Golub et al. [31,32]. It originated from
Affymetrix Hu6800 arrays. The version we used after our
normalization contained the expression of 3,571 genes across
a total of 72 samples, 25 of which were from patients who had
acute myeloid leukemias and 47 of which were from patients
with acute lymphoblastic leukemia. Additional data file 4 is
our analysis of publicly available cDNA arrays from Gru-
vberger et al. [33,34]. The data in Additional data file 4 mon-
itor 3,389 genes across 30 estrogen-receptor-negative and 28
estrogen-receptor-positive breast cancer samples.

The scatterplots in the additional data files clearly show the
presence of joint differential expression for the gap/substitu-
tion situation in all four datasets. Again, our idea works here
because the red and blue data points are tightly aligned along
their respective principle component, yielding good condi-
tional correlation. On the other hand, the two phenotypes are
separated, resulting in a low overall correlation. Also, the
scatterplots for the on/off-situation clearly show the presence
of joint differential expression, and they confirm that that
there are gene pairs with reverse correlation in the case and
control samples.

In the tables in the additional data files, we report the results
from the permutation test on each of the four datasets. They
are qualitatively similar to the ones from the colon and
BRCA1 data shown in Table 3, meaning that, again, the real
gene pairs score sufficiently better than the random ones.
Additional File 1Data from a publicly available leukemia study by Armstrong et al.Data from a publicly available leukemia study by Armstrong et al. [27,28]. The data originated from Affymetrix HG U95A arrays and, after our normalization, feature the expression of 6,177 genes across a total of 72 samples. For the CorScor analysis, we restricted to the binary distinction of 24 samples from acute lymphoblastic leukemias (ALL) versus 28 samples from acute myeloid leukemias (AML)Click here for fileAdditional File 2A dataset from a publicly available lung cancer study of Bhattach-arjee et al.A dataset from a publicly available lung cancer study of Bhattach-arjee et al. [29,30]. It also originated from Affymetrix HG U95A arrays and contains 3,171 genes after our normalization. The CorS-cor analysis was run on 20 carcinoid samples and 17 normal lung tissuesClick here for fileAdditional File 3A dataset from the seminal leukemia study of Golub et al.A dataset from the seminal leukemia study of Golub et al. [31,32]. It originated from Affymetrix Hu6800 arrays. The version we used after our normalization contained the expression of 3,571 genes across a total of 72 samples, 25 of which were from patients who had acute myeloid leukemias and 47 of which were from patients with acute lymphoblastic leukemiaClick here for fileAdditional File 4Our analysis of publicly available cDNA arrays from Gruvberger et al.Our analysis of publicly available cDNA arrays from Gruvberger et al. [33,34]. The data monitor 3,389 genes across 30 estrogen-receptor-negative and 28 estrogen-receptor-positive breast cancer samplesClick here for file
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